National Repository of Grey Literature 6 records found  Search took 0.01 seconds. 
Modification of Pivot Tables method for persistent metric indexing
Moško, Juraj ; Skopal, Tomáš (advisor) ; Hoksza, David (referee)
The pivot tables is one of the most effective metric access method optimized for a number of distance computations in similarity search. In this work the new modification of the pivot tables method was proposed that is besides distance computations optimized also for a number of I/O operations. Proposed Clustered pivot tables method is indexing clusters of similar objects that were created by another metric access method - the M-tree. The indexing of clustered objects has a positive effect for searching within indexed database. Whereas the clusters are paged in second memory, page containing such cluster, which do not satisfy particular query, is not accessed in second memory at all. Non-relevant objects, that are out of the query range, are not loaded into memory, what has the effect of decreasing number of I/O operations and total volume of transferred data. The correctness of proposed approach was experimentally proved and experimental results of proposed method was compared to selected metric access methods.
Similarity Search in Protein Structure Databases
Galgonek, Jakub ; Skopal, Tomáš (advisor) ; Porto, Markus (referee) ; Svozil, Daniel (referee)
Proteins are one of the most important biopolymers having a wide range of functions in living organisms. Their huge functional diversity is achieved by their ability to fold into various 3D structures. Moreover, it has been shown that proteins sharing similar structure often share also other properties (e.g, a biological function, an evolutionary origin, etc.). Therefore, protein structures and methods to identify their similarities are so widely studied. In this thesis, we introduce a system allowing similarity search in pro- tein structure databases. The system retrieves, given a query structure, all database structures being similar to the query structure. It employs several key components. We have introduced a novel similarity measure assigning similarity scores to pairs of protein structures. We have designed specific access method based on LAESA metric indexing and using the proposed measure. The access method allows to search similar structures more effi- ciently than when a sequential scan of a database is employed. To achieve further speedup, the measure and the access method have been parallelized, resulting in almost linear speedup with the respect to the number of available cores. The last component is a web user interface that allows to accept a query structure and to present a list of...
Similarity Search in Protein Structure Databases
Galgonek, Jakub
Proteins are one of the most important biopolymers having a wide range of functions in living organisms. Their huge functional diversity is achieved by their ability to fold into various 3D structures. Moreover, it has been shown that proteins sharing similar structure often share also other properties (e.g, a biological function, an evolutionary origin, etc.). Therefore, protein structures and methods to identify their similarities are so widely studied. In this thesis, we introduce a system allowing similarity search in pro- tein structure databases. The system retrieves, given a query structure, all database structures being similar to the query structure. It employs several key components. We have introduced a novel similarity measure assigning similarity scores to pairs of protein structures. We have designed specific access method based on LAESA metric indexing and using the proposed measure. The access method allows to search similar structures more effi- ciently than when a sequential scan of a database is employed. To achieve further speedup, the measure and the access method have been parallelized, resulting in almost linear speedup with the respect to the number of available cores. The last component is a web user interface that allows to accept a query structure and to present a list of...
Similarity Search in Protein Structure Databases
Galgonek, Jakub
Proteins are one of the most important biopolymers having a wide range of functions in living organisms. Their huge functional diversity is achieved by their ability to fold into various 3D structures. Moreover, it has been shown that proteins sharing similar structure often share also other properties (e.g, a biological function, an evolutionary origin, etc.). Therefore, protein structures and methods to identify their similarities are so widely studied. In this thesis, we introduce a system allowing similarity search in pro- tein structure databases. The system retrieves, given a query structure, all database structures being similar to the query structure. It employs several key components. We have introduced a novel similarity measure assigning similarity scores to pairs of protein structures. We have designed specific access method based on LAESA metric indexing and using the proposed measure. The access method allows to search similar structures more effi- ciently than when a sequential scan of a database is employed. To achieve further speedup, the measure and the access method have been parallelized, resulting in almost linear speedup with the respect to the number of available cores. The last component is a web user interface that allows to accept a query structure and to present a list of...
Similarity Search in Protein Structure Databases
Galgonek, Jakub ; Skopal, Tomáš (advisor) ; Porto, Markus (referee) ; Svozil, Daniel (referee)
Proteins are one of the most important biopolymers having a wide range of functions in living organisms. Their huge functional diversity is achieved by their ability to fold into various 3D structures. Moreover, it has been shown that proteins sharing similar structure often share also other properties (e.g, a biological function, an evolutionary origin, etc.). Therefore, protein structures and methods to identify their similarities are so widely studied. In this thesis, we introduce a system allowing similarity search in pro- tein structure databases. The system retrieves, given a query structure, all database structures being similar to the query structure. It employs several key components. We have introduced a novel similarity measure assigning similarity scores to pairs of protein structures. We have designed specific access method based on LAESA metric indexing and using the proposed measure. The access method allows to search similar structures more effi- ciently than when a sequential scan of a database is employed. To achieve further speedup, the measure and the access method have been parallelized, resulting in almost linear speedup with the respect to the number of available cores. The last component is a web user interface that allows to accept a query structure and to present a list of...
Modification of Pivot Tables method for persistent metric indexing
Moško, Juraj ; Skopal, Tomáš (advisor) ; Hoksza, David (referee)
The pivot tables is one of the most effective metric access method optimized for a number of distance computations in similarity search. In this work the new modification of the pivot tables method was proposed that is besides distance computations optimized also for a number of I/O operations. Proposed Clustered pivot tables method is indexing clusters of similar objects that were created by another metric access method - the M-tree. The indexing of clustered objects has a positive effect for searching within indexed database. Whereas the clusters are paged in second memory, page containing such cluster, which do not satisfy particular query, is not accessed in second memory at all. Non-relevant objects, that are out of the query range, are not loaded into memory, what has the effect of decreasing number of I/O operations and total volume of transferred data. The correctness of proposed approach was experimentally proved and experimental results of proposed method was compared to selected metric access methods.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.